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1. Introduction 

Throughout this paper, G = (V, E)  is an arbitrary undirected and weighted graph 
unless otherwise specified. V= {1, 2 , . . . ,  n} is the vertex set of G, and E C_ V x V 
is the edge set of G. For each vertex i E V, a positive weight w i is associated with 
i. A c = (aq)nX n is the adjacency matrix of G, where aij = 1 if (i, j)  E E  is an edge 
of G, and % = 0 if (i, j)  ~t E. 

The complement graph o f  G = (V, E) is the graph G = (V,/~), where /~ = 
{(i, j) li, j ~ v,  i # j  and (i, j)~?~E}. For a subset S C V, we define the weight of S 
to be W(S) = Eic s w i. We call G(S) = (S, E A S x S) the subgraph induced by S. 

A graph G = (V, E)  is complete if all its vertices are pairwise adjacent, i.e. 
Vi, j E V, (i, j)  E E. A clique C is a subset of V such that G(C) is complete. The 
maximum clique problem asks for a clique of maximum weight. 

A n  independent set (stable set, vertex packing) is a subset of V, whose elements 
are pairwise nonadjacent. The maximum independent set problem asks for an 
independent set of maximum cardinality. The size of a maximum independent set 
is the stability number of G (denoted by a(G)). The maximum weight in- 
dependent set problem asks for an independent set of maximum weight. 

We should distinguish a maximum clique (independent set) from a maximal 
clique (independent set). A maximal clique (independent set) is a clique 
(independent set) that is not a subset of any other clique (independent set). A 
maximum clique (independent set) is a maximal clique (independent set) that has 
the maximum cardinality or weight. 

A vertex cover is a subset of V, such that every edge (i, j)  E E has at least one 
endpoint i or j in the subset. The minimum vertex cover problem asks for a vertex 
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cover of minimum cardinality. The minimum weighted vertex cover problem asks 
for vertex cover of minimum weight. 

It is easy to see that S is a clique of G if and only if S is an independent set of 
G, and if and only if VkS is a vertex cover of G. Any result obtained for one of 
the above problems has its equivalent forms for the other problems. Furthermore, 
these problems are NP-complete on arbitrary graphs (see Gary and Johnson 
[79]). 

The maximum clique problem has many equivalent formulations as an integer 
programming problem, or as a continuous nonconvex optimization problem. The 
simplest one is the following edge formulation: 

n 

max ~ W i X  i , 
i = 1  

s . t .  X i + Xj ~ 1, V(i, ]) E /~, 

Xi~ {0, 1}, i = l , . . . , n .  (1) 

A polyhedral result concerning formulation (1) is due to Nemhauser and 
Trotter ([185], [186]). In 1975 they found that if a variable x i had integer value 1 
in an optimal solution to the linear relaxation of (1), then x~ = 1 in at least one 
optimal solution to (1). 

T H E O R E M  1.1 (see [186], also [210]). Let x be an optimum (0, 1, 1)-valued 
solution to the linear relaxation of  (1), and let P =  { j lx j  = 1}. There exists an 
optimum solution x* to (1) such that x~ = 1, Vj E P. 

This theorem suggests an implicit enumerative algorithm for (1) via solving its 
linear relaxation problem. However, in most cases, few variables have integer 
values in an optimal solution to the linear relaxation of (1), and the gap between 
the optimal values of (1) and its linear relaxation problem is too large. These 
seriously restrict the use of this approach. 

Let 5 r denote the set of all maximal independent sets of G. An alternative 
formulation is the following independent set formulation. 

n 

max ~ W i X  i , 
i = 1  

s.t. ~ x i <- 1, VS E 50, (2) 
i E S  

x i ~  {0, 1}, i = l , . . . , n .  

The advantage of formulation (2) over (1) is a smaller gap between the optimal 
values of (2) and its linear relaxation. However, since the number of constraints 
in (2) is exponential, solving the linear relaxation of (2) is not an easy problem. 
In fact, Gr6tschel et al. ([98] and [99]) have shown that the linear relaxation 
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problem of (2) is NP-hard on general graphs. They have also shown that the same 
problem is polynomially solvable on perfect graphs. Furthermore, they have 
shown that a graph is perfect if and only if the optimal solution to the linear 
relaxation of (2) always assumes integer values. The following results can be 
found from [97], [981, [99], and [100]. 

T H E O R E M  1.2. Let G be an arbitrary graph. The linear relaxation problem of 
(2) /s NP-complete. 

T H E O R E M  1.3. G is a perfect graph if and only if the linear relaxation of (2) has 
integer solutions for any w E R n. 

T H E O R E M  1.4. The maximum weight clique problem for perfect graphs can be 
solved in polynomial time. 

Besides the above formulations for the maximum clique problem, we can also find 
in the literature many other formulations. For example, consider the following 
indefinite [205] quadratic problem 

global max f(x) = ) xr  A ~x , 

s . t . ~ x ~ = l ,  xi>~O, i = l , . . . , n .  
i = l  

(3) 

In Theorem 1 of Motzkin and Straus [180], the following result was proved (see 
also [1]). 

T H E O R E M  1.5. Let x* and a =f(x*)  be the optimal solution and the corre- 
sponding objective value of problem (3). Then G has a maximum clique C of size 

1 
k = 1 / ( 1 -  2a). The global maximum of (3) can be attained by setting x* =-~i f  

* = 0 otherwise. v i E C, and x i 

Although this characterization does not provide an efficient approach to solve the 
maximum clique problem, it can be used to prove certain bounds on the size of 
the maximum clique. The following theorem is a consequence of a more general 
result from Hager et al. [103]. 

T H E O R E M  1.6. I f  A c has r negative eigenvalues, then at least n - r  constraints 
are active at any global maximum x* off(x) .  

Here,  by active constraints of (3) at a global maximum x*, we mean those 
n constraints x i i> 0 satisfying x* = 0, i = 1 . . . . .  n. Note that the constraint Ei=~ x i = 

1 is always active by definition. Combining theorems 1.5 and 1.6, we can obtain 
an upper bound on the size of the maximum clique of G (see also Pardalos and 
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Phillips [201]): If A c has r negative eigenvalues, the size ICI of the maximum 
clique C is bounded by [C I <~ r + 1. 

In 1990, Shor ([226]) considered an interesting formulation of the maximum 
weight independent set problem. Note that the maximum weight independent set 
problem can be formulated as 

global min f(x) = s wix i , 
i = l  

s . t .x~+xi~<l ,  V(i , j )  E E ,  x E { 0 , 1 } " .  (4) 

The above formulation is equivalent to the following quadratically constrained 
global optimization problem 

global min f(x) = s wixi, 
i = 1  

s.t. xixj=O , V(i, j) E E  , 

2 x i - x i = O ,  i = 1 , 2 , . . . , n .  (5) 

Applying dual quadratic estimates, Shor reported very good computational 
results using (5). It seems that for the maximum clique problem, a good 
formulation of the problem is of crucial importance in solving the problem. 

The general quadratic optimization problem is of the form 

1 T min f(x) = c~x + 5x Qx,  

s.t. A x = b ,  x E D ,  (6) 

where c ~ R  n, Q ~ R  nxn, A E R  mxn, and D C_R ". 

Next, we formulate the maximum clique, the maximum independent set and 
the maximum weight independent set problems as quadratic zero-one problems. 
We use I to denote the n x n identity matrix. To facilitate our discussion, define a 
transformation T from {0, 1) ~ to 2 v, 

T ( x ) = ( i l x i = l ,  i c V } ,  VxE(O, 1) ".  

Denote the inverse of T by T -1. If x = T- I ( s )  for some S E 2 v then x i = 1 if i E S 
and xl = 0 if i~_S, i= 1 , . . .  ,n. 

We can rewrite the maximum problem (1) as a minimization problem (when 
w/= 1) 

global min f(x) = - 2  xi , 
i = 1  

s.t. xi +x] ~< 1, V(i, j)  E / ~ ,  x E {0, 1}". (7) 
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If x* solves (7), then the set C =  T(x*) is a maximum clique of G with 

I c I  = - z  = -f(x*). 
Another  way of stating the constraints for (7) is to make use of the fact that the 

quadratic expressions xixj = 0 for all (i, j )  ~ / ~  since for x~, xj E {0, 1} x~ + xj ~< 1 if 
and only if xix i = 0. The constraints in (7) can be removed by adding two times 
the quadratic terms to the objective function, which-is now 

f ( x ) =  s  ~ x~xi=x ( c I )x  _ r A _ . 

i=1 (i, j)E/~, i>j 

The quadratic terms represent penalties for violations of xixj = 0. This leads to the 
following theorem. 

T H E O R E M  1.7. The maximum clique problem is equivalent to the following 

global quadratic zero-one problem 

global min f (x)  = x r  A x  , 

s.t. x E {0, 1} n , where A = A c - I .  (8) 

I f  x* solves (8), then the set C defined by C = T(x*) is a maximum clique o f  G with 

I c I  = - z  = -f(x*). 

The off-diagonal elements of the matrix A are the same as the adjacency matrix 
of G. Hence, formulations (7) and (8) are advantageous for dense graphs because 
a sparse data structure can be used (for details, see [203]). Following the 
equivalence of the maximum clique problem with the maximum independent set 
problem, we have 

T H E O R E M  1.8. The maximum independent set problem is equivalent to the 
following global quadratic zero-one problem 

global min f(x) = x r  A x  

s.t. x E {0, 1}", where A = A c - I .  (9) 

I f  x* solves (9), then the set S defined by S = T(x*) is a maximum independent set 

o f  G with IS] = - z  = - f ( x* ) .  

Next, we discuss the maximum weight independent set problem. The above 
theorems for the maximum clique problem and the maximum independent set 
problem can be regarded as a special case by taking w i = 1, i = 1, 2 . . . .  , n. 

T H E O R E M  1.9. The maximum weight independent set problem is equivalent to 
the following global quadratic zero-one problem 
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global min f ( x )  = x r  A x  , 

s.t. x E {0, 1}", (lo) 

where a ,  = - w i ,  i = 1 , . . .  , n,  aq = �89 i + wj) ,  V(i, j )  E E ,  and aij = 0, V(i, j )  E 

I f  x* solves (10), then the set S defined by S = T(x*)  is a m a x i m u m  independent  

set o f  G with weight W ( S )  = - z  = - f ( x * ) .  

As with many problems of combinatorial optimization, using the appropriate 
formulation of the maximum clique problem is of crucial importance in solving 
the problem. In addition, using different formulations, we gain more insight into 
the problem's complexity and we can prove interesting results. 

2. Complexity 

The maximum clique, maximum independent set and minimum vertex cover 
problems are computational!y equivalent on arbitrary graphs. They are also 
known to be NP-complete. Furthermore, for the maximum clique problem, the 
complexity of approximating remained an open question until recently. In [198], 
Papadimitriou and Yannakakis introduced the complexity class M A X  S N P  and 
showed that many natural problems are complete in this class, relative to a 
reducibility that preserves the quality of approximation. For example, the vertex 
cover problem (for constant degree graphs), min cut problem, dominating set 
problem, and the MAX 3-SAT problem are such complete problems [258]. 

If the solution to any of these complete problems can be approximated to 
arbitrary small constant factors, then the optimum solution to any problem in the 
class can be approximated to arbitrarily small constant factors. The question of 
whether such approximation schemes can be found for the complete problems in 
this class was left unresolved. In [29], Berman and Schnitger have shown that if 
one of the M A X  S N P  problems does not have polynomial time approximation 
schemes, then there is an ~ > 0 such that the maximum clique problem cannot be 
approximated in polynomial time with performance ratio 

size o f  m a x i m u m  clique 
size o f  approximate  clique - O(n~) ' 

where n is the number of vertices in the graph (see also Feige et al. [71], where a 
connection between approximation complexity and interactive proof systems is 
discussed). 

A breakthrough in approximation complexity is the recent result by Arora et al. 
[6], [7]. It is shown that the maximum number of satisfiable clauses in a 3-SAT 
formula (MAX 3-SAT) cannot be approximated to arbitrary small constants 
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(unless P =NP), .  thus resolving the open question in [198]. This immediately 
shows the difficulty of finding good approximate solutions to all the above listed 
problems. In particular, 'it is shown that no polynomial time algorithm can 
approximate the maximum clique size within a factor of n" (E > 0), unless P = NP 
(by using the results of Feige et al. [71]). 

Although these complexity results characterize worst case instances, they 
nevertheless indicate that the maximum clique problem is indeed a very difficult 
problem to solve. 

Some other results in the literature concerning the approximation of the 
maximum clique/independent set problem on arbitrary or special graphs can be 
found in [34], [47], [49], [57], [182], [214]. 

If we restrict ourselves to graphs with special structure, then in many cases the 
maximum clique/independent set problem can be solved in polynomial time. For 
example, Balas et al. ([15]) introduced several classes of graphs and showed that 
the maximum weight clique problem can be solved in polynomial time on them. 
In Balas and Yu ([2!]), they discussed classes of graphs that have polynomially 
many maximal cliques. On th'ese graphs, the maximum weight clique problem can 
also be solved in' polynomial time. 

A well known class of graphs where the maximum clique problem is polyno- 
mially solvable, is the class of perfect graphs ([27]). A graph G is perfect if every 
induced subgraph of G has the property that the size of its maximum clique 
equals the minimum number of independent sets needed to cover all the vertices 
(commonly called a coloring in  the literature). Since the complement graph of a 
perfect graph is also perfect, Theorem 1.4 of the last section states that the 
maximum clique problem can be solved in polynomial time on perfect graphs and 
their  complements. The class of perfect graphs contains many well known graphs 
in the literature (see [92]). For example, bipartite graphs, interval graphs, and 
triangulated graphs ([80], [74], [218], [219], [236]). Examples of more recently 
found perfect graphs ore Meyniel graphs ([174], [40]), quasi parity graphs ([175]), 
weakly triangulated graphs ([112], [113]), perfectly orderable graphs ([55]) and 
unimodutar graphs ([115]). 

A class of graphs that is closely related to the perfect graphs is the t-perfect 
graphs. This class of graphs was defined in [52]. Polynomial algorithms for the 
maximum weight independent set problem on t-perfect graphs exist ([99]). The 
class of t-perfect graphs contains bipartite graphs, series-parallel graphs ([62], [52], 
[35]), and strongly t-perfect graphs ([86]). For a polynomial time algorithm for 
solving the maximum weight independent set problem on a bipartite graph 
G(V 1, V2) see the book by Lawler [148]. 

Other special classes of graphs where the maximum clique/independent set 
problem have been studied in the literature can be found in [14], [41], [47], [48], 
[51], [49], [63], [81], [82], [93], [96], [101], [116], [120], [121], [122], [138], [141], 
[166], [167], [177], [183], [188], [197], [213], [220], [221], [233], [227], and [260]. 

We should note here that the weighted or unweighted version of the maximum 
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clique problem, the maximum independent set problem, and the minimum vertex 
cover problem may not be equivalent on graphs with special structures. 

3. Enumerative Algorithms 

The first algorithm for enumerating all cliques of an arbitrary graph in the 
literature is probably due to Harary and Ross [110]. In 1957, they proposed an 
inductive method that first identified all the cliques of a special graph with no 
more than three cliques. Then the problem on general graphs is reduced to this 
special case. Their work was stimulated by the matrix manipulation problem of 
sociometric data to find a complete identification of cliques. 

Early works following that of Harary and Ross [110] can be found in Maghout 
[164], Paull and Unger [206], Bonner [33], Marcus [165], and Bednarek and 
Taulbee [25], [64]. What Paull and Unger ([206]), and Marcus ([165]) proposed 
were algorithms to minimize the number of rows in a flow table for a sequential 
switching function. The problem addressed in Bonnet ([33]) was the clustering 
problem in information systems. Bednarek and Taulbee [25] proposed algorithms 
for generating all maximal chains of a set with a binary relation defined on it. 
Although these problems come from different fields and appear dealing with 
different problems, they are solving the same problem of enumerating all cliques 
of a graph. With the technology at that time, these early algorithms could only be 
tested on special graphs. 

In 1970, Auguston and Minker [8] investigated several graph theoretic cluster- 
ing techniques used in information systems. In their work, the algorithm of 
Bierstone (see [8], [181]) and the algorithm of Bonner [33] were tested. The 
method used in both algorithms was called the vertex sequence method or point 
removal method. This method produces cliques of G from the cliques of G - o ,  
v ~ G. From their computational results, they found the algorithm of Bierstone 
was more efficient. The original work of Bierstone was not published. The version 
of Bierstone's algorithm contained in Auguston and Minker [8] had two errors 
that were corrected by Mulligan and Corneil [181] in 1972. 

Then in 1973, two new algorithms using the backtracking method were 
proposed by Akkoyunlu [2], and by Bron and Kerbosch [37]. The advantage of 
the backtracking method is the elimination of the redundancy in generating the 
same clique. What was more important for these two algorithms was their 
polynomial storage requirements. For example, the Bron and Kerbosch algorithm 
requires at most �89 + 3) storage space. Bron and Kerbosch tested their 
algorithm on graphs of 10 to 50 vertices and densities ranging from 10% to 95%. 
Here the density was defined as the probability of a pair of vertices being 
connected. They found their algorithm was much more efficient than Bierstone's 
algorithm. One very interesting phenomenon from their test was the ratio of CPU 
time over the number of cliques of the graph, as they put it, "hardly dependent 
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on the size of the graph". Bron and Kerbosch's algorithm is Algorithm 457 in the 
ACM collection. 

More enumerative algorithms were proposed in the 70's following that of Bron 
and Kerbosch. For example, the works by Osteen and Tou [191], Osteen [190], 
Meeusen and Cuyvers [171], Johnson [132], Johnston [131], Leifman [151], 
Tsukiyama et al. [244], Gerhards and Lindenberg [85]. 

The algorithm of Osteen and Tou [191] was an improved version of the point 
removal method. Osteen's [190] algorithm was designed for a special class of 
graphs. The algorithm of Meeusen and Cuyvers [171] started with decomposing a 
graph into subgraphs satisfying the chain o f  subsets in G requirement. Such a 
decomposition had the property that every clique is contained completely in at 
least one subgraph. Based on this property, they proposed an algorithm to find all 
cliques of a graph. The work of Johnston [131], contains a family of algorithms 
that are variations of Bron and Kerbosch's algorithm. By comparing several 
algorithms computationally, Johnston [131] concluded that the Bron and Ker- 
bosch algorithm was one of the most efficient algorithms. 

Tsukiyama et al. [244] proposed an enumerative algorithm that combined the 
approaches used by Auguston and Minker [8], Akkoyunlu [2], and Bron and 
Kerbosch [37]. The result was an algorithm with time complexity of O(nmtz)  and 
storage requirement of O(n + m), where n, m, ~ are the number of vertices, 
edges and maximal cliques of a graph. This bound is stronger than the earlier 
bound of O(/x 2) due to Auguston and Minker [8] (which was pointed out by 
Tsukiyama et al. [244]). The algorithm of Gerhards and Lindenberg [85] started 
with partial cliques related to fixed vertices of G. Then, cliques were generated 
from these partial cliques. Their computational results suggested their proposed 
algorithm was as efficient as that of Bron and Kerbosch [37] for general graphs, 
but more efficient on sparse graphs. 

In 1980's, other proposed algorithms include the algorithms of Loukakis and 
Tsouros [156], Loukakis [155], Chiba and Nishizeki [46], Tomita et al. [240], and 
Johnson et al. [129]. 

Loukakis and Tsouros [156] proposed a depth-first enumerative algorithm that 
generated all maximal independent sets lexicographically. They compared their 
algorithm with the algorithm of Bron and Kerbosch [37], and the algorithm of 
Tsukiyama et al. [244]. Their computational results on graphs of up to 220 vertices 
suggested the superior efficiency of their algorithm. Namely, their algorithm was 
two to fifteen times faster than that of Bron and Kerbosch [37], and three times 
faster than that of Tsukiyama et al. [244]. Two years later, Loukakis [155] claimed 
an additional improvement of three folds of time saving over Loukakis and 
Tsouros [156]. Loukakis [155] tested his algorithm on graphs of 30 to 220 vertices 
and 10% (for small graphs) to 90% (for large graphs) densities. 

In 1988, Johnson et al. [129] proposed an algorithm that enumerated all 
maximal independent sets in lexicographic order. The algorithm has an O(n 3) 
delay between the generation of two subsequent independent sets. Based on one 
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of their results given below (see [129]), they also showed the nonexistence of a 
polynomial-delay algorithm for enumerating maximal cliques in reverse lex- 
icographic order (if P ~ NP). 

T H E O R E M  3.1. ([129]). Given a graph G and a maximal independent set S, it is 
coNP-complete to prove whether S is the lexicographically last maximal in- 
dependent set of  G. 

Chiba and Nishizeki's [46] algorithm lists all cliques with time complexity of 
O(a(G)mlx), where a(G) is the arboricity of graph G. This is an improvement 
over the time complexity of Tsukiyama et al. [244]. 

Finally, Tomita et al. [240] proposed a modified Bron and Kerbosch [37] 
algorithm and claimed its time complexity to be O(3n/3). As they pointed out, this 
was the best one could hope for since the Moon and Moser graphs [178] have 3 n/3 
maximal cliques. 

4. Exact Algorithms for the Unweighted Case 

If our goal is to find a maximum clique or just the size of a maximum clique, a lot 
of work can be saved from the above enumerative algorithms. Because once we 
find a clique, we only need to enumerate cliques better than the current best 
clique. Modifying the enumerative algorithms based on this argument results in 
various implicit enumerative algorithms. This argument can also be used in 
designing implicit enumerative algorithms. 

The most well known and commonly used implicit enumerative method for the 
maximum clique problem is the branch and bound method. Background in- 
formation on how branch and bound method works can be found in, for example, 
[17] and [187]. The key issues in a branch and bound algorithm for the' maximum 
clique problem are: 

1. How to find a good lower bound, i.e. a clique of large size? 
2. How to find a good upper bound on the size of maximum clique? 
3. How to branch, i.e., break a problem into small subproblems? 
Implicit enumerative algorithms for the maximum clique/independent set 

problem started in the 1970's by Desler and Hakimi [61], Tarjan [234], and Houck 
[118]. These early works were improved in 1977 by Tarjan and Trojanowski [235], 
and by Houck and Vemuganti [119]. In Tarjan and Trojanowski [235], they 
proposed a recursive algorithm for the maximum independent set problem. They 
showed their algorithm had a time complexity of O(2n/3). This time bound 
illustrated that it was possible to solve a NP-complete problem much faster than 
the simple, enumerative approach. In the same year, Chv~tal [53] showed that 
using a certain type of recursive proofs (see [53]) to show the upper bound on the 
stability number "has length at least O(cn) '', where c > 1 is a constant. The work 
of Houck and Vemuganti [119] exploited the relationship between the maximum 
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independent set and a special class of bipartite graphs. They used this relationship 
to find an initial solution in their algorithm for the maximum independent set 
problem. 

Most algorithms in the literature for the maximum clique/independent set 
problem were proposed in the 1980's. For example, in 1982, Loukakis and 
Tsouros [157] proposed a tree s e a r c h  algorithm that finds the size of a maximum 
independent set. Then in 1984, Ebenegger et  al.  [65] proposed another algorithm 
for finding the stability number of a graph. Their approach is based on the 
relationship between the maximization of a pseudo-Boolean function and the 
stability number of a graph. Computational tests on graphs with up to 100 vertices 
were reported in Ebenegger et  al.  [65]. 

One of the most important contributions in the 1980's on practical algorithms 
for the maximum clique problem is due to Balas and Yu [20]. In their algorithm, 
the implicit enumeration was implemented in a new way. The idea of their 
approach is as follows. First, find a maximal induced triangulated subgraph T of 
G. Once T is found, find a maximum clique of T. This clique provides a lower 
bound and a feasible solution to the maximum clique problem. Then, they used a 
heuristic coloring procedure to extend T to a larger (maximal) subgraph that had 
no clique better than the current best clique. The importance of this second step is 
that it helps to reduce the number of subproblems generated from each node of 
the search tree, which in turn, reduces the size of the whole search tree. They 
solved the maximum clique problem on graphs of up to 400 vertices and 30,000 
edges. Comparing their algorithm with other such algorithms, they found their 
algorithm not only generated a smaller search tree, but also required less CPU 
times. 

In 1986, Kikusts [140] proposed a branch and bound algorithm for the 
maximum independent set problem based on a new recursive relation for the 
stability number of a graph G. Namely, 

o~(G) = m a x {  + ce(G - v - N ( v ) ) ,  oe'} , (11) 

where od v = m a x { l I [  I C_ G - v is independent, II N N(v)I/> 2}. This relation is 
different from the recursive relation 

a ( G )  = m a x { 1  + oe(G - v - N ( v ) ) ,  oe(G - v)}, (12) 

traditionally used in designing branch and bound algorithms for the maximum 
independent set problem. Intuitively, relation (11) is stronger than relation (12). 
However, the trade off is a more complicated situation in (11). Some computa- 
tional results were provided in [140] without comparing with other algorithms. 

Also in 1986, Robson [217] proposed a modified recursive algorithm of Tarjan 
and Trojanowski [235]. Robson showed through a detailed case analysis that his 
algorithm had a time complexity of  O(20"276n). This is an improvement over the 
time complexity of  0 ( 2  n/3) of Tarjan and Trojanowski [235]. Here we want to 
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mention the complexity proof of a similar recursive algorithm by Wilf [252]. 
Although Wilf's complexity of O(1.39 n) is not as tight as that of Tarjan and 
Trojanowski [235], his-proof is much simpler. Also in [252], Wilf proved (under 
certain probabilistic assumptions) that the average number of independent sets in 
a graph with n vertices is given by: 

k=0 

Using (13), it can be shown that the average complexity of a back tracking 
algorithm for the maximum independent set problem is subexponential (because 
I n grows at the rate of O(n  l~ n)). 

In the late 1980's, new algorithms were proposed by Pardalos and Rodgers 
[204] (which is published in 1992), Gendreau et al. [84] [83], and Tomita et al. 
[238]. The algorithm of Pardalos and Rodgers [204] was based on an uncon- 
strained quadratic zero-one programming formulation of the maximum clique 
problem. In their work, the merit of two different branching rules, greedy and 
nongreedy, were tested. Some interesting results concerning the behavior of 
algorithms using these different rules were reported. The Gendreau et al. [84] 
algorithm was an implicit enumerative algorithm. Its branching rule (the selection 
of the next vertex to branch) is based on the number of triangles a vertex belongs 
to. The algorithm of Tomita et al [238] used a greedy coloring algorithm to get an 
upper bound on the size of the maximum clique. Some computational results 
could be found in [84] and [238]. 

In the 1990's, more algorithms were proposed, for example, the algorithms of 
Pardalos and Phillips [201], Friden et al. [76], Carraghan and Pardalos [43], Babel 
and Tinhofer [13], Babel [12], Xue [255]. 

Paradolos and Phillips [201] formulated the maximum clique problem as an 
indefinite quadratic global optimization problem with linear constrains. They were 
able to provide some theoretical upper bounds on the size of the maximum clique 
of a graph (see the paragraph after Theorem 1.6 in section 1). The algorithm of 
Friden et al. [76] was a branch and bound algorithm for the maximum in- 
dependent set problem. They used the Tabu search technique in finding lower and 
upper bounds in their algorithm. 

Carraghan and Pardalos [43] proposed an implicit enumerative algorithm. Their 
algorithm is very easy to understand and very efficient for sparse graphs. Their 
branching rule corresponds to the nongreedy rule described in Pardalos and 
Rodgers [204]. Using this algorithm, they were able to solve problems on graphs 
of 500 vertices. They have also tested their algorithm on instances of graphs with 
1000 and 2000 vertices. Since the algorithm is easy to understand and their actual 
code is available, it can serve as a benchmark for comparing different algorithms. 

Babel and Tinhofer [13] proposed a branch and bound algorithm for the 
maximum clique problem. The main ingredient of their algorithm is the use of a 
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fast and relatively good heuristic for the minimum coloring problem proposed by 
Brelaz [36]. The coloring heuristic is called the degree of saturation largest first 
(DSATUR). Applying DSATUR to a graph, one can find an upper bound on the 
size of the maximum clique as well as a maximal clique (thus, a lower bound). 
Babel and Tinhofer exploited this distinct feature and applied DSATUR at each 
node of the search tree. They tested their algorithm on graphs of 100 to 400 
vertices with varying densities. In 1991, Babel [12] further refined and improved 
the algorithm of Babel and Tinhofer [13]. 

Also in 1991, based on the fact that a fractional coloring solution provides a 
tighter upper bound than an integer coloring solution for the maximum clique 
problem, a heuristic for the fractional coloring problem is proposed in [255] and 
used in a branch and bound algorithm for the maximum clique problem. 
Substantial reduction in the search tree size and the improvement in efficiency of 
the branch and bound algorithm are observed because of the use of this new 
bounding procedure. Details about the method and how to extend it to the 
weighted case can also be found in [19]. 

5. Exact Algorithms for the Weighted Case 

Algorithms for finding a maximum weight independent set of an arbitrary graph 
started in 1975 by Nemhauser and Trotter [186]. They considered the polyhedron 
relationships between the edge formulation (1) of the maximum weight in- 
dependent set problem and its linear relaxation problem. Their main results were 
given as Theorem 1.1 in Section 1 of the present paper. Based on this result, they 
proposed an algorithm for the maximum weight independent set problem. 

In 1977, Balas and Samuelson [16] proposed an algorithm that solved the 
minimum vertex covering problem (a weighted version was available as men- 
tioned [16]). Their algorithm was based on the relationships between the integer 
dual feasible solution and an equivalent linear programming for the vertex 
covering problem. Labeling procedures were designed to generate and improve 
vertex covers. When these labeling procedures could not continue, branch and 
bound was used. The computational tests in [186] and [16] were conducted on 
unweighted graphs of up to 50 vertices. 

In 1983, Loukakis and Tsouros [158] proposed an algorithm for the maximum 
weight independent set problem. It seems that almost nothing else appeared in 
the literature until the late 1980's and early 1990's. Recently published algorithms 
we are aware of for the maximum weight clique/independent set problem are due 
to Pardalos and Desai [199], Balas and Xue [18], and Nemhauser and Sigismondi 
[1841. 

The algorithm proposed by Pardalos and Desai [19] was based on an uncon- 
strained quadratic 0-1 formulation of the maximum weight independent set 
problem. In addition, they established an interesting relationship between the 
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local minima of the quadratic problem and the maximal independent sets of a 
graph as follows: 

T H E O R E M  5.1. x is a discrete local minimum for problem (10) if and only if x 
represents a maximal independent set of  G. 

Their algorithm (for maximum weight independent set) used the nongreedy 
search strategy described in Pardalos and Rodgers [204]. With this algorithm they 
were able to solve problems of up to 500 vertices with different densities. Here we 
want to mention an unpublished work by Carraghan and Pardalos that was the 
weighted version of the Carraghan and Pardalos [44] algorithm. As its unweighted 
version, it is also very simple to understand. Computational tests show that the 
weighted version of Carraghan and Pardalos algorithm is more efficient than that 
of Pardalos and Desai [199]. 

Balas and Xue [18] algorithm extends the algorithm of Balas and Yu [20] to the 
weighted case. To accomplish this, a minimum weighted coloring of a triangulated 
graph was needed. Although the minimum weighted coloring problem on 
triangulated graphs is known to be in class P (see [92]), there was no algorithm in 
the literature that had reasonable time complexity. Balas and Xue [18] proposed a 
combinatorial algorithm for this problem with a time complexity of O(n2). With 
this algorithm, they extended the Balas and Yu algorithm to the weighted case. 
Their computational results show that the size of the search tree is greatly reduced 
and the CPU time is much smaller than other such algorithms, especially for 
larger, dense graphs. Graphs of size up to 2000 vertices are solved on a 
workstation. 

Recently, Balas and Xue [19] proposed another branch and bound algorithm 
for the maximum weight clique problem. The algorithm is based on the notion of 
a weighted fractional coloring of a graph and the fact that such a coloring provides 
a tighter upper bound than its integer correspondence. In [19], they proposed a 
fast heuristic for the weighted fractional coloring problem and used this heuristic 
as an upper bounding procedure in a branch and bound algorithm for the 
maximum weight clique problem. Comparing with the method in [18], computa- 
tional results show the reduction in search tree size and the improved efficiency of 
the resulting algorithm. 

The algorithm of Nemhauser and Sigismondi [184] used the polyhedron 
approach. They tried to solve the problem by first solving the linear relaxation of 
the corresponding integer programming problem. If the optimal solution to the 
relaxation problem was integer, it was done. Otherwise, sets of valid inequalities 
were generated and added into the relaxed problem to cut off the current 
fractional solution. They restricted themselves to some classes of facet defining 
inequalities for the maximum independent set problem. Since not all facets for the 
clique/independent set polytope are known, there was no guarantee that a 
fractional solution would always be cut off. When this happened, they switched to 
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branch and bound method. From their computational test, they found too many 
iterations in solving the linear relaxation problems. The largest graphs they tried 
to solve had up to 120 vertices. 

6. Heuristics 

In a branch and bound algorithm for the maximum clique problem, its lower 
bounding procedure usually provides a maximal clique which can be used to 
approximate the maximum clique of G. Since different branch and bound 
algorithms tend to have different bounding procedures, they provide us different 
heuristics for the maximum clique problem. On the other hand, there are many 
heuristics in the literature designed to find an approximate solution to the 
maximum clique problem. These heuristics are usually more complicated than the 
lower bounding procedures from a branch and bound algorithm. The reason is 
that they will be run only once. 

The majority of approximation algorithms in the literature for the maximum 
clique problem are called sequential greedy heuristics. These heuristics generate a 
maximal clique through the repeated addition of a vertex into a partial clique, or 
the repeated deletion of a vertex from a set that is not a clique. 

Kopf  and Ruhe [144] named these two classes of heuristics the Best in and the 
Worst out heuristics. Decisions on which vertex to be added in or moved out next 
are based on certain indicators associated with candidate vertices. For  example, a 
possible Best in heuristic constructs a maximal clique by repeatedly adding in a 
vertex that has the largest degree among candidate vertices. In this case, the 
indicator is the degree of a vertex. On the other hand, a possible Worst out 
heuristic can s tar t  with the whole vertex set V. It will repeatedly remove a vertex 
out of V until V becomes a clique. 

Kopf  and Ruhe  [144] further divided the above two classes of heuristics into 
New and Old (Best in or Worst out) heuristics. Namely, if the indicators are 
updated every time a vertex is added in or moved out, then the heuristic is called 
a New heuristic. Otherwise it is called an Old heuristic. We can find in the 
li terature that most heuristics for the maximum clique problem fall in one or the 
other  classes. See for example, the approximation algorithm of Johnson [127], 
and the approximation algorithm of Tomita et al. [239]. The differences among 
these heuristics are their choice of indicators and how indicators are updated. A 
heuristic of this type can run very fast. 

A common feature of the sequential heuristics is that they all find only one 
maximal clique. Once a maximal clique is found, the search stops. We can view 
this type of heuristics from a different point of view. Let  us define S~ to be the 
space consisting of all the maximal cliques of G. What a sequential greedy 
heuristic does is to find one point in So, hoping it is (close to) the optimal point. 
This suggests to us a possible way to improve our approximation solutions, 
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namely, expand the search in S a. For example, once we find a point x E $6, we 
can search its neighbors to improve x. This leads to the class of the local search 
heuristics. 

In a local search heuristic, the more neighbors of x E S c we search, the greater 
chance of finding a better solution. Depending on the neighborhood definition of 
a point x E So, and how the search is performed, different local search heuristics 
result. A well known class of local search heuristics in the literature is the 
k-interchange heuristics. They are based on the k-neighbor of a feasible solution. 
In the case of the maximum clique problem, a k-neighbor of x E S c is defined as 
follows. Let Y ~ S G ,  y is a k-neighbor of x if [x-y[<~k ,  where k lxl. A 
k-interchange heuristic first finds a maximal clique x E S a. Then it searches all the 
k-neighbors of x and outputs the best clique found. As one will expect, the main 
factors for the complexity of this class of heuristics are the size of the neigh- 
borhood and the searches involved. For example, in the k-interchange heuristic, 
the complexity grows roughly with O(nk). 

The solution quality of a local search heuristic directly depends on the starting 
point x E S a and the neighborhood of x. To improve the quality of its solution, 
we need to increase the neighborhood of x (the starting point) to include a 
"better" point. If we want to look at various points spread over So, we need to 
have a very large neighborhood. The problem is when the size of the neigh- 
borhood increases, the search effort increases so rapidly that one could not afford 
it. 

A class of heuristics designed to search various points of S c is called the 
randomized heuristics. The main ingredient of this class of heuristics is the part 
that finds a random point in S a. A possible to way to do that is to include some 
random factors in the generation of a point of S c. A randomized heuristic runs a 
heuristic (with random factors included) a number of times to find different points 
over S c. For example, we can randomize a sequential greedy heuristic and let it 
run N times. The complexity of a randomized heuristic depends on the complexity 
of the heuristic and the number N. 

An elaborated implementation of the randomized heuristic for the maximum 
independent set problem can be found in Feo et al. [72] where local search is 
combined with randomized heuristic. Their computational results indicated that 
their approach was effective in finding large cliques of randomly generated 
graphs. For example, for randomly generated graphs with 1000 vertices and 50% 
density, their approach found cliques of size 15 or larger in most cases. Here, 15 is 
a bound derived from the probabilistic analysis of this class of graphs (see [32], 
[31], [77]). A different implementation of a randomized algorithm for the 
maximum independent set problem can be found in [4]. 

Recently, Tabu search and Neural Networks have also been used to find an 
approximate solution for the maximum clique problem. For example, Friden et al. 
[75] proposed a heuristic based on Tabu search technique. A different im- 
plementation of Tabu search for the same problem was proposed by Gendreau et 
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al. [84]. Ramanujam and Sadayappan [215], Jagota [124], and Jagota and Regan 
[125] proposed heuristics based on Neural Networks. What these methods 
accomplished is to search various points of S c. However, since there are too 
many parameters affecting the search pattern (and the result), it is hard to tell 
what points in S c are being searched. Some computational results from these 
methods are encouraging. 
Another type of heuristics that finds a maximal clique of G is called the subgraph 
approach (see [20]). It is based on the fact that a maximum clique C of a subgraph 
G' C G is also a clique of G. The subgraph approach first finds a subgraph G' C G 
such that the maximum clique of G' can be found in polynomial time. Then it 
finds a maximum clique of G' and uses it as the approximation solution. The 
advantage of this approach is that in finding the maximum clique C C G', one has 
(implicitly) searched many other cliques of G' (S C, C_ So). Because of the special 
structure of G', this implicit search can be done efficiently. In Balas and Yu [20], 
G' is a maximal induced triangulated subgraph of G. Since many classes of graphs 
have polynomial algorithms for the maximum clique problem, the same idea also 
applies there. For example, the class of edge-maximal triangulated subgraphs was 
chosen in [14], [255], and [256]. Some of the greedy heuristics, randomized 
heuristics and subgraph approach heuristics are compared in [255] and [256] on 
randomly generated weighted and unweighted graphs. 

Additional heuristics for the maximum clique/independent set and related 
problems on arbitrary or special class of graphs can be found in [48], [51], [54], 
[73], [233]. 

7. Applications 

Practical applications of the maximum clique and related problems include project 
selection, classification theory, fault tolerance, coding theory, computer vision, 
economics, information retrieval, signal transmission theory, aligning DNA and 
protein sequences, and other specific problems. Some of these applications can be 
found in [10], [22], [24], [281, [501, [60], [150], [159], [163], [176], [216], [228], 
[247], [248] and [254]. 

Next we provide some very interesting applications of the maximum clique 
problem. In addition, some problems arising in these applications can be used as 
test problems for algorithm comparison and correctness. 

We start with an application in computing binary (constant weight) codes [38]. 
Let A(n, d, w) be the maximal number of binary vectors of length n, with 
Hamming distance at least d apart, and constant weight w. Also let A(n, d) be the 
maximal possible number of binary vectors of length n and Hamming distance at 
least d apart (with no restriction on weight). 

To compute A(n, d) or A(n, d, w) one forms the graph with 2 n or (~) vertices, 
corresponding to all possible code-words, joins two vertices by an edge if their 
Hamming distance is at least d, and finds the maximum clique. Similarly, finding 
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the largest code invariant under a given permutation group, requires finding the 
maximum clique in a graph with weights attached to the vertices. 

The exact values of A(n, d, w) are known for all n ~< 11 (the first undetermined 
values being 80 ~< A(12, 4, 5) ~< 84). Similarly, for d even, A(n, d) is known 
exactly for n <~ 10 (the first undetermined values being 72 ~< A( l l ,  4)~< 79). For 
more details and other references see the paper by Brouwer et al. [38]. 

The next application occurs in geometry [231]. Minkowski conjectured that all 
extremal lattices for the supermum norm were of a certain simple form, and 
observed that this conjecture had a simple geometric interpretation, that is, in any 
tiling of R n with unit n-cubes, there must exist two cubes having a complete facet 
in common. A family of cubes whose interiors are disjoint and whose union is R n 
is called a tiling. If the centers of the cubes form a lattice, then we have a lattice 
tiling. Although Minkowski's conjecture was proved in !942, Keller generalized it 
to conjecture that any tiling in R n by unit n-cubes contains two cubes having a 
complete facet in common. C0rradi and Szabo [56] proved that there is a 
counterexample to this conjecture if and only if the following graphs F~ (of 4 n 
vertices) has a 2 n size maximum clique. The 4 n vertices of F ~ are n-tuples of 
integers 0, 1, 2 and 3. A pair of these n-tuples are adjacent if there is a position at 
which the corresponding components are 2 modulo 4 and if there is a further 
position at which the corresponding components are different. The conjecture was 
proved by Peron [209] to be true for n ~< 6 and was proved by Lagarias and Shor 
[147] to be false for n I> 10. The conjecture remains open for the values of n equal 
to 7, 8, 9. 

Another interesting application appears in the study of assignment polytopes 
(see the paper by S. Onn, [189]). In particular, consider the assignment polytope 
P(n - 1, 1). The 1-skeleton of P is the graph of the set of vertices of P in which 
the edges are the 1-faces of P. Onn proved that large independent sets in the 
1-skeleton of P are exhibited, by proving that its stability number is 2 n('fgl~ n). 
More details on these applications and computational results with exact algo- 
rithms have appeared in [111]. 

8. Concluding Remarks 

While a variety of algorithms and heuristics have been proposed for the solution 
of the maximum clique problem, only a few of the suggested algorithms have 
been programmed and tested on graphs where the problem is difficult to solve. 
Extensive computational results are needed to evaluate the average performance 
of the algorithms, not only on randomly generated graphs but also on problems 
from a diverse spectrum of applications. 

In this bibliographic survey, we have attempted to briefly summarize the main 
ideas in each of the proposed algorithms. Many applications and algorithms on 
problems related to the maximum clique problem can be found in the list of 
references below. 
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An algorithm implementation challenge is taking place during 1993 at DIMACS 
(Center for Discrete Mathematics and Theoretical Computer Science), Rutgers 
University, New Jersey. One of the three topics of the Challenge is the maximum 
clique problem. The proceedings of this implementation challenge will be 
published in a DIMACS volume by the American Mathematical Society [128]. 
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